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Abstract: In order to solve the optimization problem of wet waste collection and transportation
in Chinese cities, this paper constructs a chance-constrained low-carbon vehicle routing problem
(CCLCVRP) model in waste management system and applies certain algorithms to solve the model.
Considering the environmental protection point of view, the CCLCVRP model combines carbon
emission costs with traditional waste management costs under the scenario of application of smart
bins. Taking into the uncertainty of the waste generation rate, chance-constrained programming
is applied to transform the uncertain model to a certain one. The initial optimal solution of this
model is obtained by a proposed hybrid algorithm, that is, particle swarm optimization (PSO);
and then the further optimized solution is obtained by simulated annealing (SA) algorithm, due to
its global optimization capability. The effectiveness of PSOSA algorithm is verified by the classic
database in a capacitated vehicle routing problem (CVRP). What’s more, a case of waste collection
and transportation is applied in the model for acquiring reliable conclusions, and the application of
the model is tested by setting different waste fill levels (WFLs) and credibility levels. The results show
that total costs rise with the increase of credibility level reflecting dispatcher’s risk preference; the WFL
value range between 0.65 and 0.75 can obtain the optimal solution under different credibility levels.
Finally, according to these results, some constructive proposals are propounded for the government
and the logistics organization dealing with waste collection and transportation.

Keywords: wet waste collection and transportation; chance-constrained programming; carbon
emissions; smart waste bins

1. Introduction

Solid waste management (SWM) has always been the most concerned issue in every region [1,2]
which is composed of many stages including generation, collection and transportation, treatment
and disposal [3,4]. The process of collection and transportation is one of the most challenging steps
among all aspects of SWM [5]. Specially in developing countries, up to 80–90% of municipal budgets is
reserved for waste collection and transportation services [6] which is identified as the most expensive
functional element in SWM [1], while the frequency and efficiency are still very low [6]. Therefore, waste
collection route optimization is the principal component for achieving the best savings in SWM [7].
In this paper, we consider the collection and transportation of wet waste (defined as biodegradable
waste [8]), a kind of solid waste, which is placed in specific waste bins in or around residential areas,
then collected and transported to the disposal center by special waste trucks.

Road transportation is the most common mode used for wet waste transportation, during which
fuel is consumed and carbon dioxide equivalent emissions are produced. With the emergence of
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environmental pollution problems, the issue of carbon emissions has attracted much attention [9,10].
What is more, vehicles produce emissions not only when driving, but also when loading and unloading
waste due to the necessity to keep their engines running, producing constant exhaust emissions [11,12].
These considerations highlight the importance of optimizing vehicle routing to reduce the carbon
emissions during the process of waste collection and transportation [13].

At present, most research on waste collection is carried out considering fixed routes and collection
of all the waste bins according to a predetermined schedule, but this method is not particularly good.
In particular, the use of fixed routes might lead to half-full waste bins, overflowing waste bins and high
fuel consumption, which are very serious problems [9]. For these reasons, many cities and regions are
starting to use smart waste bins to reduce operating costs and improve residents’ satisfaction through
real-time monitoring of waste volumes. Generally, a smart waste bin is a kind of waste collector which
is equipped with different technical devices, such as different sensors systems and RFID to monitor
the waste level of bin and achieve the communication between smart waste bins and trucks [5,14,15],
accordingly allowing the implementation of real-time optimized transportation routes instead of fixed
routes [13].

In short, it is necessary to study both of the wet waste generation rate and carbon emissions in
the process of wet waste collection and transportation. Therefore, we must consider the following
questions: How to plan the vehicle routes under the scenario of application of smart waste bins; how
to handle the stochastic variable of waste generation rate; how to quantify the carbon emissions of
waste collection vehicles; and how to build a comprehensive optimization model that considers costs
and carbon emissions. Thus, this paper is organized as follows: a literature review of related work
is presented in Section 2. The model formulation is proposed in Section 3. The proposed algorithm
is described in Section 4. The algorithm experiment and model experiment are shown in Section 5.
Finally, conclusions are presented in Section 6.

2. Literature Review

The main idea of this article is about waste collection and transportation considering the waste
generation rate which will be handled by chance-constrained programming against the background
of smart waste bins’ application. In the model, the carbon emissions are also considered. We review
the literature in three areas: waste collection and transportation (vehicle routing problems, carbon
emissions and smart waste bins), chance-constrained programming, and heuristic algorithms.

2.1. Research about Waste Collection and Transportation

There is a series of studies about waste collection and transportation including all kinds of waste.
Kim et al. [16] established a VRPTW model for commercial waste collection, taking into account
multiple waste treatments and driver rest time. Zsigraiova et al. [12] established a vehicle route
optimization model for glass waste collection based on a GIS system. Asefi et al. [17] considered
different types of waste carried by different vehicles, established a vehicle routing model with the
lowest total cost and workload balance of different transfer stations. Markov et al. [18] established a
recyclable waste collection routes optimization problem considering random inventory and established
a waste prediction model based on sensor data and historical data of the waste collection container.

A range of techniques has been employed in an optimization model for SWM with diverse focus
and objectives [19], for example, smart waste bins. With the development of science and technology,
smart waste bins are gradually being introduced. Akhtar et al. [5] established a waste collection model
considering the application of smart bins. The research results show that the optimal threshold waste
level of waste bin is between 70% and 75%, and the improved model and algorithm perform better
in path optimization. Some researches apply smart waste bins in real cases, including glass bins in
Geneva, Switzerland [18] and residential waste bins in the UAE [20]. Maurizio et al. [11] regarded
the amount of waste generated as a random variable. Real-time data were acquired through modern
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traceable devices such as RFID, GPRS and GPS, and corresponding rules are set to determine whether
waste bins should be collected.

Vehicles are the main mode of waste transportation, which can release a lot of carbon dioxide. Thus,
some scholars have studied the carbon emissions in the process. Jabbarzadeh et al. [21] established
a model to solve the optimal transportation route with the objective of minimizing greenhouse gas
emissions cost in the waste management system. Herold and Lee [22] took 40 global logistics companies
as examples and discussed how the extent of the dynamic interaction between internal and external
practices influences carbon disclosure strategies. Herold et al. [23] illustrated how the interaction of
institutional and stakeholder pressures influences a company’s carbon disclosure and depicted four
types of carbon disclosure strategies. Edalatpour et al. [24] estimated the average social cost of carbon
and the amount of carbon dioxide produced per ton of dry and wet waste. Then sustainable benefits
from reducing carbon dioxide emissions are calculated and taken as the benefit component in the
objective function.

We can see from the above research that many kinds of waste are considered for collection and
transportation from the environmental point of view. However, wet waste which is collected separately
has been rarely studied in the implementation of waste classification considering carbon emissions
both of driving and idling which is important for the waste collection vehicles. The technology of smart
waste bins is widely studied, yet the application of smart waste bins in the stage of waste collection
and transportation is rarely considered.

2.2. Research about Chance-Constrained Programming

When we consider the waste generation rate, we will be confronted with a stochastic number;
therefore, we will need a stochastic programming method to solve the model [24]. The chance-constrained
programming technique was introduced by Charnes and Cooper for stochastic programming [25] and
has been applied to solve the various kinds of VRPs considering stochastic variables.

Edalatpour et al. [24] established and solved a generic waste management model considering
the waste generation rate by a chance-constraint method and analyzed the influence of significant
levels on the objective function. Zhang et al. [26] developed a multi-echelon supply model in which
the waste generation rate is a stochastic variable, and is transformed into a deterministic constraint.
Xu et al. [27] constructed a model combining a genetic algorithm and fuzzy chance-constrained
programming to support SWM under uncertainty conditions, and the applicability of the proposed
model was demonstrated by a real reginal waste management issue. Men et al. [28] considered a
HazMat equipped vehicle routing problem (H-CVRP) in a type-2 fuzzy environment. Because of the
stochastic variable of population density, the objective function involved trapezoidal interval type-1
variables, and was transformed into two equivalent constrains by chance-constrained programming.
Kundu et al. [29] proposed a solid transportation problem with fuzzy variables including availability,
demands and conveyance capacities, and chance-constrained programming was employed to solved
the problem. Kundu et al. [30] investigated multi-objective solid transportation problems considering
various uncertainties, including stochastic penalties, fuzzy resource, demands, conveyance capacities
and budget. In the model, the uncertain contains are reformulated into deterministic ones by a
chance-constrained programing technique.

From the above studies, we can see that chance-constrained programming is effective for stochastic
variables, but few articles have applied it to waste generation rates in the field of waste collection
and transportation.

2.3. Research about Some Algorithms for Waste Collection and Transportation

There are various methods for VRP including metaheuristic, exact method, classic heuristic,
real-time solution and simulation [31]. The VRP problem is a NP-hard problem. Therefore, it is natural
to use a heuristic to solve the problem [32], such as the adaptive Harmony Search Algorithm (HSA) [33],
adaptive Large Neighborhood Search (LNS) algorithm [34], Iterated Greedy Algorithm (IGA) [35],
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Genetic Algorithm (GA) [3] and Particle Swarm Optimization (PSO) algorithm [36], Simulated
Annealing Algorithm (SAA) [28,37,38], Multiple Neighborhood Search (MNS) algorithm [24], etc.

Waste collection and transportation is one type of application of VRP, and many studies have
solved the VRP in the context of MSW. Jacobsen [39] formulized a municipal solid waste (MSW)
collection and transportation problem into a mixed integer program and a heuristic solution was
proposed for the problem. Buhrkal et al. [32] studied the waste collection vehicle routing problem with
time windows considering worker lunch breaks. The greedy algorithm was employed to construct the
initial solution which was improved by the adaptive large neighborhood search with the destroy and
repair methods and the results illustrated the usefulness of the algorithm. Hemmelmayr et al. [40]
considered a waste collection node routing problem, then the variable neighborhood search and
insertion were done by dynamic programming. Schneider et al. [41] was the first person to introduce
the vehicle routing problem with intermediate stops (VRPIS). To solve the complex problem, the author
combined the strong diversification of varying neighborhood search with an adaptive mechanism to
get a highly efficient heuristic, characterized by short computing times and high-quality results.

In summary, the studies about algorithms for waste collection and transportation have appeared
extensively but most of them used a single algorithm, rather than a hybrid algorithm which can
learn from others’ strong points and close the gap. In view of this, the paper proposed a model
considering carbon emissions and waste generation rate which will be handled by chance-constrained
programming for wet waste collection and transportation.

3. Model Formulation

3.1. Problem Description

There is a wet waste disposal center used as the depot with a certain number of wet waste
collection vehicles and a set of smart waste bins to be collected. The location of the disposal center and
each smart waste bin are known. The wet waste volume and quantity can be monitored. The waste
generation rate during the period from collection vehicle’s departure to smart waste bins is a stochastic
parameter and the chance constraint programming is applied to deal with this uncertainty Additionally,
the carbon emissions are considered both in driving and idling. The goal of the problem is to find an
optimal solution considering the factor of cost, waste generation rate and environment. The detailed
assumptions in this paper are as follows:

(1) There is only one type of wet waste collection vehicles with limited capacity.
(2) The location of the depot and each smart waste bin are known.
(3) Each waste generation point has its independent stochastic rate of waste generation and obeys

normal distribution [24].
(4) All waste collection vehicles must return the depot when collection tasks completed.
(5) Each smart waste bin is only collected by one vehicle once.

3.2. Notation

Based on the needs to establish the model, Table 1 presents the corresponding notation applied in
this paper.
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Table 1. Description of symbols.

Notation Explanation

B Set of smart waste bins (B = 1, 2, · · · , N)
V Set of vehicles (V = 1, 2, · · · , K)
L Longest length of each route
qi Initial waste of bin i

∆qi Incremental waste of bin i, ∆qi ∼ N
(
µi, σ2

i

)
Q0 Weight of vehicle itself
Q1 Load weight of vehicle
Q Maximum load capacity of vehicle
ρ0 Fuel consumption rate per unit distance while vehicle is empty (L/km)
ρ Fuel consumption rate per unit distance (L/km)
ρ∗ Fuel consumption rate per unit distance while vehicle is at full load (L/km)
ρidel Fuel consumption rate per unit time while vehicle idling
F f uel Total amount of fuel consumption (L/min)
ECO2 Total amount of carbon emissions from fuel consumption.
η Conversion factor value of fuel consumption and carbon dioxide
ε Cost of per unit carbon emission

di j Distance between smart waste bin i and j
ti Service time of smart waste bin i
p f Fixed cost of per unit vehicle
xi jk If the vehicle k visits bin j from i, xijk is 1. Otherwise, xi jk is 0
p Price of per unit fuel consumption

3.3. Model Construction

The model of waste collection and transportation in this paper takes vehicle cost including the
fixed vehicle cost and the variable vehicle cost and the carbon emissions as the objective functions.
Above all, we analyze the components of three objective functions separately, and then the specific
formulation of the model is determined by these components.

3.3.1. Analysis of Objectives Function

1. Vehicle cost

(1) Fixed vehicle cost

Fixed cost refers to the capital cost, insurance cost, tax cost and salvage cost and etc., the total
fixed cost C f in the model can be calculate as:

C f =
K∑

k=1

n∑
j=0

x0 jkp f (1)

(2) Variable vehicle cost

Variable cost refers to the cost of fuel from two activities including driving and idling. Driving
means the activity between the collection nodes, idling means the fuel consumption of loading on a
certain bin and unload waste. What is more, the distance and load determine the driving fuel, and the
idling fuel consumption is dependent on the time of idling [42].

The paper refers to literature [43] to calculate the fuel cost. From the analysis above, we can know
fuel consumption rate (FCR) of driving is the linear function of vehicle load, thus, when the load is Q1,
FCR can be calculated with the equation:

ρ(Q1) = ρ0 +
ρ∗ − ρ0

Q
Q1 (2)
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In the CCLCVRP model, FCR of driving can be expressed as:

ρi j = ρ0 +
ρ∗ − ρ0

Q

i−1∑
m=0

xmlk(qm + ∆qm) (3)

(a) Total fuel cost of driving is calculated as:

C f uel−drive =
N∑

i=0

N∑
j=0

xi jkdi jρi jp (4)

(b) Total fuel cost of idling can be expressed as:

C f uel−idel =
N∑

j=1

xi jkt jρidelp (5)

(c) Total variable vehicle can be calculated by the below equation:

Cv = C f uel−drive + C f uel−idel (6)

2. Carbon Emissions Cost

The literature has shown that the carbon emissions of vehicles have a relationship with fuel
consumption [44]. The paper uses the following Equation (7) to calculate the amount of carbon dioxide
emissions from fuel consumption:

ECO2 = ηF f uel (7)

The total amount of fuel consumption is decided by the distance of driving and the time of idling:

F f uel =
N∑

i=0

N∑
j=0

xi jkdi jρi j +
N∑

j=1

xi jkt jρidel (8)

ECO2 = η(
N∑

i=0

N∑
j=0

xi jkdi jρi j +
N∑

j=1

xi jkt jρidel) (9)

Total carbon emission cost can be calculated as:

Cc = εECO2 (10)

3.3.2. Model Setting

On the basis of the above analysis, the mathematical model built in the study is as follows:

MinF =
K∑

k=1

n∑
j=0

x0 jkp f +
N∑

i=0

N∑
j=0

xi jkdi jρi jp +
N∑

j=1

xi jkt jρidelp+εη(
N∑

i=0

N∑
j=0

xi jkdi jρi j +
N∑

j=1

xi jkt jρidel) (11)

Subject to:
K∑

k=1

N∑
i=0

xi jk = 1, ∀ j = 1, 2, · · · , N (12)

K∑
k=1

N∑
j=0

xi jk = 1, ∀i = 1, 2, · · · , N (13)
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N∑
i=0

xi jk =
N∑

i=0

x jik = 1, ∀ j = 1, 2 · · · , N; k = 1, 2, · · · , K (14)

N∑
j=1

xi jk
(
q j + ∆q j

)
≤ Q, i = 0, 1, · · · , N; k = 1, 2, · · · , K (15)

N∑
i=0

N∑
j=0

di jxi jk ≤ L, ∀k = 1, 2, · · · , K, i , j (16)

N∑
i=0

N∑
j=0

xi jk ≤ |S| − 1, S ⊆ {1, 2, · · · , N}, ∀k = 1, 2, · · · , K (17)

The objective function (11) is to minimize the total cost including vehicle cost and carbon emission
cost. Constraint (12) shows that each waste bin must be collected once by a vehicle. A vehicle begins
at the depot and ends at the last visited customer, which is imposed by Constraint (13) and (14).
Constraint (15) represents that the amount of bins for each path cannot larger than the maximum load
of the vehicle. The total length for each route does not exceed the longest length of route, which is
provided by Constraint (16). Constraint (17) illustrates the subtour elimination.

3.4. Chance-Constrained Programming

As an efficient tool for decision making in uncertain environments to hedge risk, chance-constrained
programming (CCP) has brought more attention recently. In a CCP problem, decision makers are
interested in satisfying a constraint by at least a pre-specified probability at the minimum cost [45]:

minψ(x)s.t. P
{
C(x, ξ)

}
≥ 1− γx ∈ X (18)

where x ∈ X represents the decision variables, ψ often represents a convex cost function, ξ
represents a random vector defined on a probability space and the set function P{} represents the
probability distribution.

Due to the greatly uncertain of waste generation rate [46], it’s difficult to predict the amount of
generated waste during the period from collection vehicle’s departure to smart waste bins, which is set
as a stochastic variable in constraint (15). Thus, in order to solve the model, it necessary to convert the
uncertain constraint to a certain one by CCP. For the stochastic variable ∆q in constraint (15) of the
CCLCVRP model, the CCP mode is stated as follows:

Pr

 N∑
j=1

xi jk
(
q j + ∆q j

)
≤ Q

 ≥ γ, i = 0, 1, · · · , N; k = 1, 2, · · · , K (19)

where γ is the predefined credibility level;
According to ∆qi ∼ N

(
µi, σ2

i

)
, we have the following equivalent constraints:

N∑
j=1

xi jkµ j + Φ−1(γ)

√√√√ N∑
j=1

(
xi jk

)2
σ2

j +
N∑

j=1

xi jkq j ≤ Q (20)

So far, constraint (15), the stochastic part of the model is transformed into the determined one by
chance-constrained programming.
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4. Algorithm

4.1. Algorithm Design

Because of the NP-hard [47] nature of the proposed problem, which combines CVRP with
stochastic variables, exact methods need lots of time to solve large sized problems optimally. Therefore,
meta-heuristic algorithms were developed to achieve optimal or near optimal solutions in a reasonable
time for large sized problem instances. The meta-heuristic algorithms try to generate some random
solutions initially. Then by searching in the neighborhoods of better solutions, they try to find near
optimal solutions. Meta-heuristic algorithms are divided into two categories: solution-based and
population-based algorithms. Since population-based algorithms have more speed and accuracy in
finding optimal solutions [36], a Particle Swarm Optimization (PSO) algorithm is adopted to generated
an initial optimal solution. Considered that the problem with PSO is premature convergence and
local minima. To avoid this, better exploration is required and hence PSO is equipped with Simulated
Annealing (SA) algorithm. SA is a local search-based algorithm that has a mechanism to escape from
local optimum with the purpose of finding a global optimum. The PSOSA algorithm detailed flow
chart for solving the CCPLCVRP model is shown in Figure 1.
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4.2. Encoding and Decoding

There is a major problem with the PSO algorithm, which is how the position of the particle
corresponds to the solution of the model. The encoding and decoding of this particle can ensure that
each smart waste bin is served once and that each smart waste bin can be limited to only one vehicle.
What is more, the calculation of the solution process can be reduced. This article constructs a coding
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method for the particle, according to literature [44]. All particles are composed of three parts: Part 1
has B particles (B is the number of smart waste bins), the value of each particle represents the vehicle
number as well as the sub-path number to which each smart waste bin belongs and is randomly
selected from the natural number of 1 to V; Part 2 has B particles (from 1 to B) which is the sequence
number of smart waste bins; Part 3 has B particles(randomly generated between 0–1), the size of the
value decides the order of the various smart waste bin in each sub-path.

For example, there is a depot (number 0), 10 smart waste bins (number 1 to 10) and three vehicles
(1 to 3). For the following particles:

As displayed in Table 2, the first line is about part1 includes 1, 2 and 3, indicating that there are
three vehicles and three sub-paths. Part 2 is showed in the second line from 1 to 10 representing the
smart waste bin sequence. It can be seen the smart waste bins of 3, 4, 9 and 10 are allocated to the
sub-path1; 2, 5and 7 are allocated to the sub-path2; 1, 6 and 8 are allocated to the sub-path3. Part 3
corresponding to the third line of Table 2 decides the visiting order of each sub-path and to make it
clear the fourth line gives the number order of the third line. Each vehicle starts from the depot and
back to the depot after finishing their assignment. Thus, the sub-path1 is 0-4-10-3-9-0. The second
sub-path is 0-7-2-5-0. The third sub-path is 0-8-6-1-0.

Table 2. Allocation of smart waste bins.

3 2 1 1 2 3 2 3 1 1
1 2 3 4 5 6 7 8 9 10

0.7358 0.4398 0.6832 0.3605 0.0735 0.0884 0.9307 0.3978 0.3530 0.7460

5 6 9 4 8 2 3 1 10 7
Sub-path1 0 4 10 3 9 0
Sub-path 2 0 7 2 5 0
Sub-path 3 0 8 6 1 0

4.3. Constructing Initial Optimal Solution Based on PSO Algorithm

First, we use the PSO algorithm to obtain a high-quality initial solution. When the algorithm
starts, each solution in the solution space is considered as a particle. In the shrinking space, each
particle has a position to determine its position and a speed to determine its distance and direction.

4.3.1. Initialization and Fitness Evaluation

Parameter initialization [44], sets the length of particle code VarSize, the number of population nPop,
maximum number of iterations MaxIt, the number of r1, r2, acceleration factor c1, c2, and the particle
range [VarMin, VarMax] and velocity range [−0.1× (VarMax−VarMin), 0.1× (VarMax−VarMin)].
The solution vector is a 1-dimensional variable in this paper. When the particles are initialized, the
position and velocity of the i-th population can be expressed as:

xi = rand(VarSize).× (VarMax−VarMin) + VarMin (21)

vi = rand(VarSize).× (VelMax−VelMin) + VarMin (22)

All particles have a fitness value to evaluate the strength that is determined by the fitness function,
which is calculated based on the cost of each route.

4.3.2. Determining Optimal Solution

In each iteration, each particle has an individual extremum, which is expressed as pbest and all
particles share a global extremum, which is expressed as gbest. Particles follow the individual extremes
and global extremes to search in the solution space and find the optimal solution.
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4.3.3. Particle Status Update

Each time the position and velocity are updated according to Equation (23):
vi+1 = ωi+1vi + c1r1

(
pbest
− xi

)
+ c2r2

(
gbest
− xi

)
I f vi+1 > vmax, vi+1 = vmax

I f vi+1 < vmin, vi+1 = vmin
xi+1 = xi + vi+1

(23)

Generally, to improve the convergence of the particles, inertia weight (ω) is used. Since the search
space is complex, a time variant inertia weight is used which is specified in Equation (24):

ωi+1 = ωi ×wdamp (24)

In Equation (24) wdamp is the inertia weight damping ratio, which is between 0–1. Initially, a high
inertia weight is used leading to high global exploration. As the iteration progresses, the inertia weight
is lowered to guide local exploitation.

4.3.4. Terminating Condition

Finally, when the greatest population number nPop appears is the end of the condition. Otherwise,
it will continue to evolve.

4.4. Structure Global Optimal Solution Based on SA

This paper combines annealing algorithm with the particle swarm optimization algorithm in
order to make for the shortcoming of poor local search ability of the particle swarm optimization
algorithm and produce a high quality solution.

4.4.1. Initialization and Initial Solution

Parameter initialization, set the initial temperature T0, the final temperature Tend, the chain length
for each temperature L. The optimal solution obtained by PSO algorithm is set as the initial solution of
SA algorithm.

4.4.2. Generation of New Solution

If the new solution is not as good as the initial solution, it is not necessarily discarded. Thus,
Metropolis criterion is invoked to determine whether to accept a worse solution or not which is
described as Equation (25):

p =

 exp
(
−

∆ f
Ti

)
, ∆ f ≥ 0

1, ∆ f < 0
(25)

New solution is newsolu, the objective function value is newobjv, and ∆ f is used to represent the
increment of the objective function, ∆ f = newobj− objv. Ti is the current temperature. If newobjv is less
than obj, the new solution is unconditionally accepted. If newobjv is higher than obj, the probability of
acceptance of the new solution is p = exp (−

∆ f
Ti
).

For each temperature, a series of L attempts are performed to explore the space and the best
solution under each temperature is recorded.

4.4.3. Cooling Operation

During the process, the temperature decreases by multiplying the cooling coefficient r to enforce
the convergence as is shown by Equation (26):

Ti+1 = Ti × r (26)
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4.4.4. Terminating Condition

Finally, that the temperature Ti is lower than the final temperature Tend is the end of the condition.
Otherwise, it will continue to evolve.

5. Numerical Experiments and Analysis

5.1. Algorithm Experiment

In this section,10 cases (A-n32-k5, A-n36-k5, A-n46-k7, A-n53-k7, A-n62-k8, A-n80-k10, B-n51-k7,
F-n135-k7, P-n76-k5 and P-n101-k4) are chosen from the typical database in CVRP to test the applicability
of design PSOSA algorithm. Table 3 shows the information about the test instances which includes
the number of nodes and the capacity of vehicles. The related parameters are set according to the
literature [37,48,49], as shown in Table 4. In this study, the traditional PSO algorithm is compared with
the proposed PSOSA algorithm. Each of the following experiments is executed 20 times with Matlab
R2016b on a PC with Intel core i5 CPU operating at 2.60 GHz. The best value is recorded as the optimal
results. Table 5 shows the detailed computational results of PSO and PSOSA.

Table 3. Data about the test instances.

Case Node Capacity

A-n32-k5 31 100
A-n36-k5 35 100
A-n46-k7 45 100
A-n53-k7 52 100
A-n62-k8 61 100

A-n80-k10 79 100
B-n51-k7 50 100
F-n135-k7 134 2210
P-n76-k5 75 280

P-n101-k4 100 400

Table 4. Parameters of PSOSA.

Description Parameter Value

Number of the population Np 20
Inertia weight ω 0.7

Inertia weight damping ratio ωdamp 0.99
Personal learning coefficient c1 1.5
Global learning coefficient c2 1.5

Evolution terminate generation Mp 1000
Initial temperature T0 1000
Cooling coefficient r 0.9
Final temperature Tend 1
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Table 5. Results of PSO and PSOSA.

Database
PSO PSOSA

Cost Length Carbon
Emissions Cost Length Carbon

Emissions

A-n32-k5 3889 1628 1628 3587 1543 974
A-n36-k5 6005 1623 1127 5256 1454 1005
A-n46-k7 5039 2075 1419 4771 1893 1382
A-n53-k7 6982 2925 2090 3856 2463 1918
A-n62-k8 10,449 3043 2367 9035 2766 2053
A-n80-k10 15,103 4531 2836 9997 4471 2641
B-n51-k7 8552 2864 1905 6203 2648 1697
F-n135-k7 14,645 5946 5876 12,906 5671 4052
P-n76-k5 10,227 2573 1390 9576 2369 1237
P-n101-k4 7091 2865 1762 6739 2680 1628

Figure 2 shows some values of the iterative process of PSOSA algorithm. It can be seen in Figure 2
that the highest fitness value has been obtained when the number of iterations of the PSOSA algorithm
is less than 500. We can easily see from Table 5 that, compared with the PSO algorithm, the results
obtained by PSOSA including the total cost, the carbon emissions and the route length are better.
Overall, they have a great improvement in the quality of the solution. Thus, the proposed PSOSA
algorithm in this paper is effective and competitive in tackling VRP.
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5.2. Model Experiment

5.2.1. Experimental Design

The distribution data of a vehicle routing problem concerning waste collection and transportation,
which is referred from [50], is used to verify the CCLCVRP model. There is one wet waste disposal
center used as the depot and several waste collection vehicles of the same kind with a capacity of
2000 kg. There are 30 smart waste bins to be collected. Considering that the study is aimed at wet
waste, the waste amount in original data is processed by multiplied by 60%.

Detailed information is displayed in Table 6, including of the position and amount of waste. And
we set the other parameters of the CCLCVRP model according to the former studies [44,51,52], which
are shown in Table 7.
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Table 6. Information about the Depot and Smart Waste Bins.

Point X Coordinate Y Coordinate Amount of Waste

Depot 2.3 2.12 —
1 0.98 0.08 376.122
2 3.6 1.05 339.786
3 3.35 2.68 463.5
4 1.92 4.27 548.34
5 2.46 4.55 551.1
6 3.87 1.67 550.002
7 0.74 2.35 361.116
8 2.43 0.01 463.326
9 0.36 1.55 562.482

10 3.94 2.43 336.3
11 1.97 1.31 556.908
12 1.18 3.42 569.934
13 0.4 4.56 365.358
14 0.4 2.85 323.094
15 4.64 1.33 442.266
16 1.02 4.64 550.506
17 4.78 0.32 440.82
18 1.7 3.13 424.128
19 0.3 0.54 450.822
20 1.72 2.58 337.632
21 3.02 4.78 339.684
22 3.06 1.36 561.144
23 2.78 2.63 480.888
24 2.73 3.56 379.59
25 1.01 1.07 559.44
26 3.94 4.13 317.43
27 1.74 0.69 437.328
28 4.86 2.19 516.66
29 0.58 3.88 401.7
30 3.56 3.52 420.366

Table 7. Parameters related to the objective function.

Parameters Value

p f 100 CNY
p 8 CNY//L
ρ0 0.165 L/km
ρ∗ 0.377 L/km
ρidel 0.05 L/min
η 2.63 kg/L
ε 0.025 CNY/kg

5.2.2. Experimental Results

1. Experimental Results of Comparison between CCP and EVM

CCP is an efficient tool to solve the stochastic problem and credibility level γ in CCP is
predetermined representing the probability of path success without overloading and reflecting the
dispatcher’s risk preference. The higher the γ, the lower the risk. Firstly, the comparison experiment
with Expected Value Method (EVM) is designed to verify the rationality of CCP. EVM refers to
the incremental amount of waste is predicted according to the average values without considering
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disturbance factor [53]. In order to evaluate the solution of the two methods more effectively, the
robustness [53] of the solution is defined, as is stated in Equation (27):

Robustness = Pr

 N∑
j=1

xi jk
(
q j + ∆q j

)
≤ Q

 (27)

The robustness of the solution indicates the probability of path success, that is, the probability of
not overloading. The EVM and CCP with different γ are implemented 20 times and the robustness is
shown in Table 8.

Table 8. the Robustness of EVM and CCP.

Results EVM
CCP (γ)

0.6 0.7 0.8 0.9 0.99

Robustness 45% 55% 75% 80% 90% 97%

We can see from Table 8, EVM has a lower robustness, while the CCP has a higher one which is
close to the predefined credibility levels (γ).

2. Experimental Results of WFLs and Credibility Levels

Different combinations of WFLs and credibility levels will result in different optimal solutions.
Thus, secondly, we do the following experiments to achieve optimal optimization. Each experiment is
implemented 20 times, and the numerical value with the best result is recorded.

In order to evaluate the solution more comprehensively, two concepts are introduced, tightness
and unit cost. Tightness [54] is estimated by calculating the amount of waste carried per unit vehicle
capacity, as shown in Equation (28). Unit cost is about the collection cost of per unit waste and is stated
in Equation (29):

Tightness =
Total collected waste

NO.o f vehicles×Capacity o f vehicles
(28)

Unit Cost =
Total cost

Total collected waste
(29)

Then we do two initial experiments: (1) an experiment about WFLs in a static environment, that is,
no consideration of γ; (2) an experiment about γ, that is, WFL = 0. Finally, we do a sensitivity analysis
of WFLs under different credibility levels.

(i) Experimental Results of WFLs

We consider seven WFLs, namely, 0, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.9 [54], to compute an efficient
waste collection route, and waste bin exceeding a certain WFL needs to be collected. Table 9 shows
the obtained results, including total cost (C), carbon emissions (CE), total length (L), improvement (I),
the number of collected smart waste bins (n), the number of vehicles used (N), detail route (Route),
total collected waste (TCW), the percentage of total collected waste (TCWp), tightness (T) and unit cost
(UC).The applying of WFL concept shows impressive results on smart waste bin efficiency compared
with the conventional pattern (WFL = 0). The model showed improved results when using the smart
waste bin. With the increase of WFL, the total cost, carbon emissions and total length decrease and the
fifth column shows the improvement in total cost under different WFLs compared with conventional
pattern. Obviously, the increase in WFL leads to the drop both in the number of collected smart waste
bins and the number of vehicles. To illustrate the impact of smart waste bins on environment, Figure 3
shows the carbon emissions at different WFLs. We can see carbon emission reached a highest value
without the use of smart waste bins (WFL = 0) and carbon emissions decrease, as WFL increases.
To better explain the change in tightness and efficiency, the results are shown in Figure 4. Generally, the



Int. J. Environ. Res. Public Health 2020, 17, 458 15 of 21

less unit cost means the better savings of cost and carbon emissions, and the higher tightness means
the good savings of distance. Figure 4 shows that we can get the good value both of tightness and unit
cost at the WFL of 0.7 for the database.

Table 9. Obtained detailed results by applying the WFL concept.

WFL C CE L I n N Route TCW TCWp T UC

WFL = 0 945 80 91 0% 30 7

(0,11,3,29,4,0)

13,428 100% 96% 0.07035

(0,23,26,9,5,0)
(0,20,17,18,14,8,0)
(0,12,24,25,30,0)
(0,7,28,10,6,0)
(0,16,22,15,2,0)

(0,27,19,21,1,13,0)

WFL = 0.9 350 16 18 63% 9 3
(0,7,1,2,0)

5010 37% 83% 0.06983(0,9,4,6,0)
(0,3,8,5,0)

WFL = 0.8 460 20 23 51% 11 4

(0,4,10,5,0)

6007 45% 75% 0.07659
(0,2,6,0)

(0,1,7,9,0)
(0,11,3,8,0)

WFL = 0.75 583 27 31 38% 14 5

(0,6,9,8,0)

7385 55% 74% 0.07889
(0,5,1,0)

(0,10,13,7,0)
(0,12,2,3,0)
(0,11,14,4,0)

WFL = 0.7 632 43 47 33% 19 5

(0,18,16,17,5,0)

9550 71% 96% 0.06618
(0,6,2,3,0)

(0,4,9,7,13,0)
(0,12,15,1,14,0)
(0,19,10,8,11,0)

WFL = 0.65 728 42 48 23% 20 6

(0,1,15,20,4,0)

9952 74% 83% 0.07312

(0,8,18,11,9,0)
([0,2,16,14,0)
(0,5,17,13,6,0)

(0,19,3,7,0)
(0,10,12,0)

WFL = 0.6 776 58 67 18% 24 6

(0,23,11,10,17,0)

11,434 85% 95% 0.06791

(0,6,15,22,20,0)
([0,19,9,8,18,0)
(0,13,1,16,12,0)
(0,14,7,21,3,0)
(0,24,5,4,2,0)

(ii) Experimental Results of Credibility Levels

The amount of waste generated within the waste generation points are not always determined
over time, so we realistically consider the waste generation rate as a stochastic parameter. This means
that when collection vehicles depart from the depot according to the schedule and the amount of waste
in smart waste bins, there will be an incremental of waste amount in smart waste bins as travelling
time elapses, so a chance constraint method is applied to deal with this uncertainty and credibility
levels are predefined to insure the probability of routes’ success. The means and standard deviations
of the incremental for each bin are random assigned values, respectively.

We do the sensitivity analysis under the condition of WFL = 0 (all the smart waste bins will be
collected according to the schedule). Obviously, the objective function varies with the predefined
credibility levels and the objective values of the same solution are different with different credibility
levels. As shown in Figure 5, the total cost of this optimal solution increase and the number of vehicles
does not reduce as γ increases. It is worth mentioned that for γ = [0.5,0.6], [0.85,0.9] and [0.95,0.99],
the total cost of optimal solution has a sharp increase with the number of vehicles grows. For other
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point, there is a slight change. The predetermined γ reflects the dispatchers’ different attitudes toward
risk [55]. dispatchers can accept the risk brought by path failure with a lower γ; otherwise, dispatchers
hope the actual amount of waste will be less than the expected one with a high γ to avoid overloading.
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3. Experiment results of WFLs under different γ

This section deals with the improvement in waste collection and route optimization by implying
smart waste bins under different credibility levels. As shown in Figure 6, we adopt the different
predefined credibility levels γ of 0.99, 0.95, 0.9, 0.85, 0.8, 0.7, 0.6 and 0.5 to obtain the tightness and
unit cost of the optimal solutions under different WFLs. The results illustrate that both of the higher
tightness above 80% and lower cost about 0.07 CNY/kg are generated at 0.65 or 0.75 of WFL. If 0.9
of WFL is considered, the high efficiency can be realized, however, the collected waste percentage
is less than 60% under all the predefined credibility levels, which will be inconvenient for waste
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collection vendors. Taking Figure 6d for example, we can see the better solution can be obtained at
the WFL of 0.7 with 91% tightness, 0.068 CNY/kg of unit cost and 87% collected waste percentage
under the credibility level of 0.85. Although the efficiency is not bad at WFL of 0.9, the total collected
waste percentage is about 35%, which is too little to leading to overflowing for some smart waste bins.
Nevertheless, for different credibility levels, the set of WFL at 0.65 or 0.75 provides the most efficient
and optimized values.
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5.3. Analysis of Results

For the VRP in waste management, the CCLCVRP model is built in this paper aiming at the
optimization of the wet waste collection and transportation system. Under the application of smart
waste bins, we study the impact of different WFLs and credibility levels on the total cost, unit cost,
tightness and the percentage of collected waste. Obviously, it is difficult to determine a certain optimal
value of WFL under different credibility levels, because it will change as various factors change,
including the waste management decision, waste generation rate and so on. However, we can confirm a
value range of WFL to achieve the overall optimality of the waste collection and transportation system
with the application of smart waste bins. In this paper, by assigning different numerical combination
of WFLs and credibility levels, we obtain the optimal solutions by PSOSA. The main summings-up are
listed as follows:

(1) For experiment 1, when the WFL is increasing, all of the total cost, carbon emissions and route
length decrease, and the unit cost and tightness fluctuate. In the static environment, there is a
certain WFL of 0.75 with the minimum unit cost and the highest tightness.

(2) For experiment 2, when γ ∈ [0.8, 1), the dispatcher is the risk aversion type, expecting to plan more
vehicles to obtain higher path reliability; when γ ∈ [0.5, 0.8), the manager is the risk preference
type, thinking that the overloading risk caused by uncertain environment can be accepted.

(3) For experiment 3, in the range between 0.65 and 0.75 of WFL, the waste transportation obtains
the overall optimality under different credibility levels.

(4) Through setting different value of WFLs and credibility levels, it is proved that the CCLCVRP
model is applicable for waste collection and transportation.

Based on the above results, some constructive suggestions are put forward. From the perspective
of waste collection and transportation organizations, they can apply scientific ways such as path
optimization methods and technical means such as smart waste bins to reduce the total cost. In a
static environment, the WFL of 0.75 is a good choice to ensure the efficiency of waste collection
and transportation. In a stochastic environment, a credibility level should be set in accordance with
dispatcher’s risk preference, then make the best use of smart waste bins to choose the optimum WFL
between 0.65 and 0.75 to obtain the maximum tightness, minimum unit cost, and appropriate collected
waste percentage.

From the perspective of government environment departments, firstly, they’d better introduce
some relevant policies to accelerate the application of smart waste bins to raise the efficiency of waste
management system. Secondly, they must strengthen people’s awareness of environmental protection,
and encourage the enterprise to save energy and reduce carbon emissions.

6. Conclusions

With the development of intelligent technology, smart waste bins have been applied in some
regions of China, which can rise the efficiency of SWM. Waste collection and transportation is a
high-carbon emissions stage in SWM with a stochastic waste generation rate. It is necessary to optimize
the waste collection routes while taking into environmental benefits based on the data from smart
waste bins. In this paper, based on the application of smart waste bins, a comprehensive CCLCVRP
model, with the minimized total cost including vehicle cost and carbon emissions cost, is designed
to optimize the wet waste collection and transportation paths. An improved genetic algorithm,
PSOSA, is introduced to solve the model. Moreover, the numerical experiments are used to verify the
effectiveness of the algorithm. Then a case data is used to validate the established model. The minimum
total cost, the tightness, unit cost and total collected waste percentage are calculated respectively as
the reference for subsequent experiments with different WFLs and credibility levels. Based on the
results, some suggestions are provided for the department of waste management and waste collection
and transportation organizations. In future research, the CCLCVRP based on the application of smart
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waste bins can consider multiple vehicle types and all kind of waste. In addition, real data can be used
to get some more realistic and reliable examples.
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